Junchen Liu

(+1) 5106465890

⊠liujunchen0214@gmail.com

EDUCATION **Beihang University** Beijing, China BEng. in Computer Science and Technology GPA: 3.89/4.0 (top 5%) Core Course: Optimization in CS, Parallel programming, Computer Graphics, and Digital Image Processing University of California, Berkeley Visiting student Courses: CS284B

RESEARCH EXPERIENCES

Rip-NeRF (SIGGRAPH 2024, conference track)

Position: first author

Supervisor: Assistant Professor Hao Zhao, Wenbo Hu Lab: Institute for AI Industry Research, Tsinghua University

- Proposed a novel 3D space factorization method, Platonic Solid Projection to represent 3D scene with the 2D faces of a Platonic Solid to distinguish anisotropic 3D Gaussians.
- Represented the faces of platonic solid by Ripmap Encoding to enable anisotropic area-sampling •
- Achieved higher PSNR than Zip-NeRF while maintaining efficient reconstruction on both the blender and real-world captured dataset and reached a flexible trade-off between rendering quality and efficiency.

Neural Refractive-Reflective Fields

(has been submitted to TPAMI in September 2023, arxiv link: https://arxiv.org/abs/2309.13039)

Position: co-first author

Supervisor: Assistant Professor Hao Zhao

Lab: Institute for AI Industry Research, Tsinghua University

- Used Ray-Tracing and Neural-based methods to achieve few-shot new view synthesis of transparent objects
- Geometry estimation: Optimized the object geometry defined by SDF using object mask prior supervision • and converted the SDF to an explicit mesh using DMTet
- Environment map estimation: Froze the obtained SDF information and optimize NeRF to obtain environment texture mapping (each ray is sampled only once) for environment map estimation

Staged Gaze Prediction in VR Environment

(has been accepted by CAD/CG 2023, in the process of being submitted to TVCG.)

Position: The second author

Supervisor: Associate. Professor. Miao Wang

Lab: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

- Executed user experiments and gathered data on parameters like rotational velocity during three-step grasping
- Analyzed the correlation between these parameters and the users' gaze position using SPSS
- Conducted ANOVA on stage-wise data to assess inter-stage differences, selected several attributes with • highest correlation, and used them as the input for the neural network to predict gaze

Jun. 2023 - Sept. 2023

Mar. 2023 – Jun. 2023

Berkeley, CA, USA

Nov. 2023 - Jan. 2024

Jan. 2024 - Present

Sept. 2020 - June 2024

PROJECT EXPERIENCES

Tri-MipRF Nerfstudio Integration

Github link: trimiprf_nerfstudio

SELECTED AWARDS AND SCHOLARSHIPS

•	Meritorious Winner, Interdisciplinary Contest in Modeling 2023 (Top 7.09%)	May 2023
•	Grand Prize of Study Scholarship (Top 3%)	2021 - 2022
•	Grand Prize of Competition Scholarship	2021 - 2022
•	First Prize, Beijing Division, The Chinese Mathematics Competition 2022	Dec. 2022
•	National First Prize, Undergraduate Mathematical Contest in Modeling (Top 0.65%).	Nov. 2022
•	National Scholarship (Top 1% highest scholarship from Ministry of Education of China)	Oct. 2022
•	First Prize, Beijing Division, The Chinese Mathematics Competition 2021	Dec. 2021
•	Second Prize, National Professional Software Engineering "Lanqiao Cup" Design Contest	May 2021

ADDITIONAL INFORMATION

- Computer skills: Proficient in Python, C, C++, CUDA, Java, Go and intermediate in Unity and MATLAB
- Language skills: Chinese (Native Speaker), English (fluent)
- Standard tests: IELTS: 7.0, GRE: V150+Q170